29[™] ESPACOMP CONFERENCE

EARLY CAREER RESEARCHERS & STUDENTS SHOWCASE SESSION

13-14 November 2025 Málaga, Spain

Ilunion Hotel, Paseo Maritimo Antonio Machado, 10

BRIDGING GAPS IN MEDICATION ADHERENCE: STAKEHOLDER ENGAGEMENT AND INTERPROFESSIONAL INTERVENTIONS

29th ESPACOMP Conference, 2025

Early Career Researchers Session

Session Chair: Sara Mucherino 14 November 2025 8:15 am -9:15 am

Index

Program2
Presentation guidelines3
Abstracts selected for Early Career Group Networking Session presentations4
Cross-sectional and longitudinal analysis of factors influencing medication adherence and glycaemic control among people with type 2 diabetes in Singapore and the United Kingdom4
The moderating role of negative beliefs in the relationship between sarcopenia and medication adherence in older adults5
Adherence to asthma and COPD medications in Belgium (2020–2023): a nationwide retrospective cohort study of demographic and clinical determinants6
Psychometric evaluation of C-MABQ15, a new self-report medication adherence tool for identifying individuals' determinants (barriers and enablers) of adhering to medication for bipolar disorder7
Effectiveness of using manual pill organizers and pill reminder apps in improving medication adherence and health outcomes in Indian elderly population receiving multiple medications (PORA-MEDAdhere): study protocol8
Pharmacist-led interventions to enhance medication adherence and patients' satisfaction in atrial fibrillation: a systematic review and meta-analysis9
From plan to practice: using implementation mapping to develop theory based, adaptable, and context appropriate implementation strategies for the delivery of myCare Start in Switzerland
Evaluating the myCare Start Service to improve adherence during treatment initiation: protocol for a hybrid type II effectiveness-implementation study12
Exploring potential interventions aimed at improving medication self-management in young patients with a chronic disease: a participatory action research study

Program

8:15	Sara Mucherino, ECR committee chair
	Introduction and Opening Remarks
8:17	Vivien Teo
	Cross-sectional and longitudinal analysis of factors influencing medication
	adherence and glycaemic control among people with type 2 diabetes in
	Singapore and the United Kingdom
8:24	Bruna Brazzolotto
	The moderating role of negative beliefs in the relationship between
	sarcopenia and medication adherence in older adults
8:31	Amélie Rosière
	Adherence to asthma and COPD medications in Belgium (2020–2023): A
	nationwide retrospective cohort study of demographic and clinical
	determinants
8:38	Asta Ratna Prajapati
	Psychometric evaluation of C-MABQ15, a new self-report medication
	adherence tool for identifying individuals' determinants (barriers and
	enablers) of adhering to medication for bipolar disorder
8:45	Aditi Apte
	Effectiveness of using manual pill organizers and pill reminder apps in
	improving medication adherence and health outcomes in Indian elderly
	population receiving multiple medications (PORA-MEDAdhere): study protocol
8:52	Fernanda S. Tonin
	Pharmacist-led interventions to enhance medication adherence and patients'
	satisfaction in atrial fibrillation: a systematic review and meta-analysis
8:59	Sarah Serhal
	From plan to practice: using implementation mapping to develop theory
	based, adaptable, and context appropriate implementation strategies for the
	delivery of myCare Start in Switzerland &
	Evaluating the myCare Start service to improve adherence during treatment
	initiation: protocol for a hybrid type ii effectiveness–implementation study
9:06	Minke Copinga
	Exploring potential interventions aimed at improving medication self-
	management in young patients with a chronic disease: a participatory action
	research study
9:13 – 9:15	Sara Mucherino, ECR committee chair
	Closing remarks and announcement of the winner

Presentation guidelines

Dear Presenters, we are excited to see you showcase your research during the **Early Career Researchers Committee Session** at the ESPACOMP 2025 conference! To ensure a concise and impactful presentation, each presenter will follow the **"Four W" format**, focusing on the key elements of your work.

Your presentation should be structured around four slides, each answering one of the following questions:

- 1. **Who**: Who is involved in your research? Briefly introduce yourself, your team, and the population or group that is the focus of your research.
- 2. **What**: What is the core of your research? Summarize the main research question, hypothesis, or problem you are addressing. Highlight the most important findings or insights.
- 3. Where/When: Where and when was the research conducted? Provide context on the study location and timeline. Mention any relevant data sources or settings where the study was conducted.
- 4. **Why**: Why is this research important? Explain the significance of your study. Why should we care? How does it contribute to the field of medication adherence or impact patient outcomes?

Presentation Format

- Time: Each presenter has 7 minutes total (4 minutes for presenting, 3 minutes for Q&A).
- **Slides**: Prepare 4 slides—one for each "W"—keeping the content clear and visually engaging.

Important Time Management Guidelines

- Each presenter has 4 minutes to present their work and 3 minutes for Q&A.
- Ensure **1 minute per slide** to allow time for the discussion.
- Correct timing will be evaluated, so please respect the schedule.
- You have **4 minutes to convince us** of the importance of your research before we move to questions. Keep your presentation concise and impactful!

The **Four W** format is designed to help you communicate the essence of your research in a clear, concise, and memorable way. Good luck, and we look forward to seeing your work!

Abstracts selected for Early Career Group Networking Session presentations

Cross-sectional and longitudinal analysis of factors influencing medication adherence and glycaemic control among people with type 2 diabetes in Singapore and the United Kingdom

<u>Vivien Teo</u>^{1,2}, John Weinman¹, Kai Zhen Yap², Shaun Eric Lopez³, Anna Hodgkinson⁴, Mark Chamley⁴

1 King's College London, London, United Kingdom. 2 National University of Singapore, Singapore, Singapore. 3 Tan Tock Seng Hospital, Singapore, Singapore. 4 Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom

Abstract

Aim: To identify common and distinctive factors influencing medication adherence and glycaemic control among people with type 2 diabetes in Singapore and the United Kingdom (UK)

Methods: The study recruited 550 participants. Medication adherence, medication beliefs, illness perceptions, mood, and glycaemic control were assessed using a list of validated questionnaires and glycated haemoglobin (HbA1c). Multivariate regressions and multilevel models identified factors influencing adherence and HbA1c at baseline and in 3-6 months.

Results: Overall, participants with higher resistance to illness (β =-0.084, p=0.031), greater medication concern (β =-0.069, p=0.026) and reduced understanding of diabetes (β =0.105, p=0.053) had lower baseline medication adherence. Participants with higher medication adherence (β =-0.088, p=0.006), greater personal control over diabetes (β =-0.154, p<0.001) and reduced emotional impact of diabetes (β =0.076, p=0.008) had lower baseline HbA1c. At follow-up, increased perceived helpfulness of treatment was associated with higher medication adherence (β =0.140, p=0.051). Greater personal control over diabetes was associated with lower HbA1c (β =-0.092, p=0.009). In Singapore, participants with greater resistance to illness (β =-0.110, p=0.011) and medication concern (β =-0.101, p=0.006) had lower baseline medication adherence, while participants with greater tendency to test their treatment (β =0.145, p=0.029) and lower personal control over diabetes (β =-0.133, p=0.006) had higher baseline HbA1c. In the UK, sensitivity to medication was negatively associated with baseline medication adherence (β =-0.262, p=0.019), while medication adherence (β =-1.020, p=0.040) and personal control over diabetes (β =-1.803, p=0.001) were negatively associated with baseline HbA1c.

Discussion and Conclusion: Our study identified common and distinctive factors influencing medication adherence and glycaemic control, supporting broadly applicable and locally relevant personalised intervention development.

The moderating role of negative beliefs in the relationship between sarcopenia and medication adherence in older adults

<u>Bruna Brazzolotto</u>¹, Karina Bertoldi¹, Gabriela Nogueira¹, Leonardo Teixeira¹, Fabiana Luiza Hornung¹, Giovanna Faria¹, Manuela Campinha², Ana Julia Gomes², Gabriella Carbonieri², Amannda Thais Cristo¹, Karen Fernandes², Cristina Baena¹

1 Pontifical Catholic University of Paraná, Curitiba, Brazil. 2 Pontifical Catholic University of Paraná, Londrina, Brazil

Abstract

Background: Sarcopenia is highly prevalent in the older population and may influence multiple determinants of medication adherence. However, how these factors interact remains poorly understood.

Aim: To explore the potential role of negative beliefs about medications in the association between sarcopenia and medication adherence in older adults

Methods: This cross-sectional study included 597 individuals aged ≥60 years from public healthcare centers in Brazil. Medication adherence was assessed using the 7-item Medication Adherence Questionnaire (MAT-7). Covariates included sociodemographic characteristics, comorbidities, medication regimen, physical performance, and beliefs about medications. Logistic regression was used with stepwise forward selection (Wald, p < 0.05).

Results: Participants had a mean age of 70.1 years (SD = ± 6.7); 356 (56.7%) were women. A total of 71.8% had low educational attainment, and 69.5% had a monthly income below three minimum wages. Sarcopenia was present in 59.3% of the sample, and 26.1% reported medication non-adherence. Although the absence of sarcopenia was initially associated with a protective effect against non-adherence (OR = 0.59; 95% CI: 0.39–0.87; p = 0.009), independent of age, sex, marital status, income, neurological conditions, and sensory impairment, this association appeared to be moderated by negative beliefs about medications (OR = 0.68; 95% CI: 0.45–1.05; p = 0.08). Among participants without such beliefs, the associations between sarcopenia, income, and sensory impairment with adherence were more pronounced.

Discussion and Conclusion: Sarcopenia is an independent determinant of non-adherence, whereas negative beliefs appear to exert a stronger and potentially overriding influence on adherence.

Adherence to asthma and COPD medications in Belgium (2020–2023): a nationwide retrospective cohort study of demographic and clinical determinants

Amélie Rosière¹, Stéphanie Pochet¹, Carine De Vriese¹

1 Université Libre de Bruxelles - Faculty of Pharmacy, Bruxelles, Belgium

Abstract

Aim: Therapeutic adherence is a key indicator of asthma and COPD management quality, directly impacting clinical outcomes and public health. This study quantifies adherence to asthma and COPD medications in Belgium and examines its demographic and clinical determinants.

Methods: We conducted a nationwide retrospective cohort study using the Pharmanet database, which includes all reimbursed dispensations in Belgian community pharmacies. We included 878,342 patients with ≥ 2 asthma or COPD medications from the same pharmacological class between 2020 and 2023. Adherence was measured using the Continuous Multiple-Interval Measure of Medication Availability (CMA), reflecting the implementation phase of medication adherence. Predictors of adherence (CMA \geq 0.8) were assessed using mixed-effects logistic regression.

Results: Mean CMA was 0.51 (SD = 0.35), with 30.2% of patients classified as adherent. Adherence was lowest for ICS (reference group, 6.2%) and LABA+ICS (23.4%), and highest for triple therapy LAMA+LABA+ICS (66.4%; OR = 12.1, 95% CI: 11.81–12.39). Montelukast showed the highest adjusted OR (14.7), despite a slightly reduced adherence rate (59.2%). Males were more adherent than females (OR = 0.9, 95% CI: 0.89–0.90, p < 0.001). Adherence increased with age: 3.4% of children (0–10 years) were adherent, compared to significantly higher rates in older adults (OR = 10.3 for \geq 65 vs 0–10 years, 95% CI: 9.96–10.56, p < 0.001).

Discussion and Conclusion: Therapeutic adherence is suboptimal and influenced by clinical and demographic factors. Patient-centered strategies are needed to improve adherence. Qualitative research should be prioritized to identify barriers and support development of interventions.

Psychometric evaluation of C-MABQ15, a new self-report medication adherence tool for identifying individuals' determinants (barriers and enablers) of adhering to medication for bipolar disorder

<u>Asta Ratna Prajapati</u>¹, Alexandra L Dima², Allan Clark³, Jon Wilson¹, Chris Gibbons⁴, Debi Bhattacharya⁵

1 Norfolk and Suffolk NHS Trust, Norwich, United Kingdom. 2 Universitat Autònoma de Barcelona, Barcelona, Spain. 3 University of East Anglia, Norwich, United Kingdom. 4 Oracle, Texas, USA. 5 University of Leicester, Leicester, United Kingdom

Abstract

Aim: We aimed to evaluate the psychometric properties of the 'Collaborative Medication Adherence in Bipolar disorder (BD) Questionnaire (C-MABQ)'. The prototype 50-item C-MABQ development was informed by the Theoretical Domains Framework (TDF), ABC taxonomy and four empirical studies. C-MABQ is intended for people with BD, to identify their medication adherence determinants.

Methods: We conducted a cross-sectional study of C-MABQ with patients prescribed lithium. Data were collected in July-September 2021 following ethical approval and consent. A subsample responded twice for test-retest reliability. We performed Mokken Scale analysis and confirmatory factor analysis to examine structural validity. Missing data were imputed using the item's median value. Criterion validity was evaluated against Medication Adherence Report Scale-5 (MARS-5) and lithium levels.

Results: Of 835 patients invited to take part in the C-MABQ survey, 43.5% (n=363) completed it. Fifteen items, C-MABQ15, representing six TDF domains, 'Emotion', 'Social Influence', 'Memory, attention and decision processes', 'Intention', 'Goal', 'Social/professional role and identity', met Mokken Scale criteria and demonstrated structural validity. C-MABQ15 showed criterion validity with MARS-5 (p=0.32, P<0.001) but not lithium levels, had good model fit (CFI=0.997, TLI=0.996, RMSEA=0.059), internal consistency (α =0.91, 95%CI=0.89 to 0.93) and test-retest reliability (ICC=0.74, 95%CI=0.61 to 0.82, P<0.001).

Discussion and Conclusion: C-MABQ15 identifies individuals' adherence determinants. Each C-MABQ15 item maps to a TDF domain facilitating personalised adherence support by matching behaviour change techniques to patient's responses. C-MABQ15 is the first BD-specific medication adherence tool enabling personalised adherence interventions, addressing a critical gap in adherence determinant assessment, with potential to improve outcomes.

Effectiveness of using manual pill organizers and pill reminder apps in improving medication adherence and health outcomes in Indian elderly population receiving multiple medications (PORA-MEDAdhere): study protocol

<u>Aditi Apte</u>¹, Farah Naaz Fathima², Bhupendra Solanke³, Sumithra Selvam⁴, Dhiraj Agarwal¹, Pooja Shridhar², Harpreet Singh³, Radhika Nimkar¹, Rakesh Patil¹, Jerin Jose Cherian^{5,6}, Sudipto Roy^{5,7}

1 KEM Hospital Research Centre, Pune, India. 2 St Johns Medical College, Bengaluru, India. 3 Armed Forces Medical College, Pune, India. 4 St Johns Research Institute, Bengaluru, India. 5 Indian Council of Medical Research, New Delhi, India. 6 Karolinska Institutet, Stockholm, Sweden. 7 Academy of Scientific and Innovative Research, Gaziabad, India

Abstract

Aim: Medication non-adherence affects 60-75% of elderly individuals taking medications for chronic diseases. There is limited evidence about interventions for improving medication adherence and its impact on health outcomes amongst geriatric population of low- and middle-income countries. The primary objective is to assess the impact of manual pill organizer (MPO) and pill reminder app (PRA), individually and in combination on medication adherence amongst Indian elderly patients receiving multiple medications. Secondary objectives include assessment of impact on morbidity profile, health care utilisation, quality of life and cost-effectiveness as well as cost-utility of the interventions.

Methods: This open-label, 2x2 factorial randomized controlled study is being conducted at two geographically distinct locations in India. A total of 752 participants aged 60-80 years, receiving ≥3 medications are randomized into four groups: Control, MPO, PRA, and MPO+PRA. All participants receive education on the importance of medication adherence. The PRA is an indigenously developed Android App 'MedSathi' that provides real-time customised reminder for medications. Measurements: Medication adherence is assessed using Medication Adherence Rating Scale (MARS-5), self-reported seven-day point prevalence of non-adherence, and pill count at 3, 6 and 12 months. Additional parameters include morbidity profile, healthcare utilization and health-related quality of life (EQ-5D-5L).

Discussion and Conclusion: The study will provide first evidence on whether MPO and PRA in Indian elderly patients is beneficial and cost-effective in improving medication adherence and health outcomes. The interventions developed through the study can be potentially scaled up in health programs and clinical practice settings.

Pharmacist-led interventions to enhance medication adherence and patients' satisfaction in atrial fibrillation: a systematic review and meta-analysis

<u>Fernanda S. Tonin</u>¹, Victoria García-Cardenas¹, Ross T. Tsuyuki², Fernando Fernandez-Llimos³, Ulrich Laufs⁴, Martin Schulz^{5,6}

1 University of Granada, Granada, Spain. 2 University of Alberta, Alberta, Canada. 3 University of Porto, Porto, Portugal. 4 Leipzig University Hospital, Leipzig, Germany. 5 Freie Universität Berlin, Berlin, Germany. 6 ABDA – Federal Union of German Associations of Pharmacists, Berlin, Germany

Abstract

Aim: Tailored pharmacy-based interventions have potential to improve cardiovascular outcomes, but their impact on atrial fibrillation (AF) remains unclear. We aimed to evaluate the effectiveness of pharmacist support in medication adherence to prescribed therapies in AF care.

Methods: A systematic review of randomized and non-randomized trials (CRD42025647848) was performed with searches in PubMed, Scopus, Web of Science. Intervention details were collected following the ABC taxonomy (initiation, implementation, and discontinuation) and the TIDieR checklist. Data was synthesized using random-effects meta-analyses, with findings reported as risk ratios (RR) with 95% confidence intervals (CI). Risk of bias was assessed using RoB 2.0 and ROBINS-I tools.

Results: Eight studies (2017-2024) of moderate methodological quality, mainly from Asia (n=4) and North America (n=2) were included. Patients were predominantly aged 65-75 years (58% male), with comorbidities including hypertension (64%), diabetes (28%), and history of stroke (20%). Most interventions (88%) focused on anticoagulation management combined with education and counseling; only one study included pharmacist-led prescribing. Half of the studies lacked information on intervention procedures. Three studies used MPR, while others used SMAQ28 and MMAS-8 questionnaires. Although individual studies reported a significant positive impact of pharmacists on adherence, the meta-analysis did not show statistical differences (RR 1.35 [95%CI 0.80-2.27]; p=0.26). However, patient satisfaction with pharmacist-led care was significantly higher (67-100% vs. 25-90% in usual care, p=0.0002).

Discussion and Conclusion: While pharmacist-led care enhances satisfaction in AF, its effect on medication adherence remains limited. Future studies should ensure standardized reporting (EMERGE guidelines) and consistent adherence assessment.

From plan to practice: using implementation mapping to develop theory based, adaptable, and context appropriate implementation strategies for the delivery of myCare Start in Switzerland

<u>Sarah Serhal</u>^{1,2}, Juliane Mielke³, Karima Shamuratova^{1,2}, Cedric Lanier⁴, Dagmar M. Haller⁴, Natascha Krauer^{1,2}, Samuel Allemann⁵, Fanny Mulder^{6,7,8}, Stephen P. Jenkinson^{7,6}, Alice Panchaud⁶, Stéphane Guerrier^{2,1,9}, Joachim Marti¹⁰, Giulio Cisco¹⁰, Clemence Perraudin¹⁰, Sabina De Geest^{3,11}, Marie P. Schneider^{1,2}

1 School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland. 2 Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland. 3 Institute of Nursing Science, Department Public Health, University of Basel, Basel, Switzerland. 4 University Institute for Primary Care, Faculty of Medicine, University of Geneva, Geneva, Switzerland. 5 Pharmaceutical Care Research Group, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland. 6 Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland. 7 Swiss Pharmacists' Association (pharmaSuisse), Liebefeld, Switzerland. 8 Graduate School for Health Sciences (GHS), University of Bern, Bern, Switzerland. 9 Department of Earth Sciences, University of Geneva, Geneva, Switzerland. 10 University Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland. 11 Academic Centre for Nursing and Midwifery, Department of Public Health and Primary Care, KU Leuven, Leuven, Switzerland

Abstract

Aim: Effective implementation of innovative pharmacy services requires structured planning to address context-specific barriers, facilitators, and practice patterns. Since its inception in the UK in 2011, the New Medicine Service (NMS) has been attempted in 11 countries, with only three achieving nationwide integration. Barriers including low patient uptake, underdeveloped pharmacist-physician relationships, and ambiguous pharmacist roles have hindered broader adoption. In Switzerland, the NMS has been adapted into myCare Start, an interprofessional service supporting adherence during treatment initiation. This study aimed to develop an implementation strategy bundle for the successful implementation of myCare Start in Swiss ambulatory primary care and community pharmacy settings.

Methods: Using a co-creation approach (involving pharmacists, GPs, patients), the five-step Implementation Mapping framework was followed: (1) conducting a context analysis, (2) defining implementation outcomes, identifying determinants and setting change objectives, (3) mapping evidence-based behaviour change methods to determinants, (4) selecting implementation strategies (5) designing an evaluation plan. Strategies were operationalised following Procter et al.'s reporting recommendations.

Results: Key determinants identified included time constraints, workflow variability, and patient engagement challenges. Twenty-three strategies—16 core and 7 adaptable—were identified to meet diverse needs. Core strategies include standardised training, workflow integration guidance, interprofessional collaboration support, technical assistance, and

champion selection. Adaptable components allow for local tailoring, including facilitation and custom engagement materials.

Discussion and Conclusion: Implementation Mapping enabled the creation of a structured yet adaptable implementation strategy bundle. A hybrid trial launching in 2025 will evaluate the effectiveness and implementation of myCare Start to support broader pharmacy service scalability.

Evaluating the myCare Start Service to improve adherence during treatment initiation: protocol for a hybrid type II effectiveness—implementation study

<u>Sarah Serhal</u>^{1,2}, Natascha Krauer^{1,2}, Karima Shamuratova^{1,2}, Dagmar M. Haller³, Cedric Lanier³, Juliane Mielke⁴, Samuel Allemann⁵, Fanny Mulder^{6,7,8}, Stephen P. Jenkinson⁷, Alice Panchaud⁶, Stéphane Guerrier^{1,2,9}, Mucyo Karemera^{1,2,9}, Joachim Marti¹⁰, Giulio Cisco¹⁰, Clemence Perraudin¹⁰, Sabina De Geest^{4,11}, Marie P. Schneider^{1,2}

1 School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland. 2 Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland. 3 Institute for Primary Care, Faculty of Medicine, University of Geneva, Geneva, Switzerland. 4 Institute of Nursing Science, Department Public Health, University of Basel, Basel, Switzerland. 5 Pharmaceutical Care Research Group, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland. 6 Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland. 7 Swiss Pharmacists' Association (pharmaSuisse), Liebefeld, Switzerland. 8 Graduate School for Health Sciences (GHS), University of Bern, Bern, Switzerland. 9 Department of Earth Sciences, University of Geneva, Geneva, Switzerland. 10 University Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland. 11 Academic Centre for Nursing and Midwifery, Department of Public Health and Primary Care, KU Leuven, Leuven, Switzerland

Abstract

Aim: In Switzerland, nearly half of the population lives with a long-term condition, yet medication non-adherence remains a major barrier to optimal care and health system efficiency. Inspired by the UK's New Medicine Service, myCare Start—an effective interdisciplinary, person-centered service supporting adherence during treatment initiation—was adapted for Swiss primary care using stakeholder co-design and implementation science. Purpose: This abstract presents the protocol for evaluating myCare Start through a Hybrid Type II effectiveness—implementation study.

Methods: The service will be implemented in 30 to 40 early-adopter pharmacies across French- and German-speaking regions of Switzerland using a randomised stepped wedge design. Eligible participants are adults prescribed new medications for cardiovascular disease, hyperlipidaemia, diabetes, respiratory illnesses (asthma or COPD), or mental health conditions (depression). Adherence, the primary outcome, will be assessed via health insurance data (using AdhereR) and patient self-reports (BAASIS®). Cost-effectiveness will be evaluated based on healthcare utilisation and quality-adjusted life years (EQ-5D-5L), with long-term outcomes modelled using Markov Modelling. A mixed methods approach will be used to evaluate implementation outcomes (acceptability, appropriateness, adoption, feasibility, fidelity, and implementation cost) including semi-structured qualitative interviews, validated measures (including Time-Driven Activity-Based Costing), investigator logs, facilitation checklists and consultation records.

Results: The 12–18-month trial is set to launch in September 2025 following ethics approval.

Discussion and Conclusion: By evaluating both implementation and effectiveness, this study will reveal if, how, and why the intervention works—guiding the scale-up of myCare Start in Swiss primary care and offering insights for broader global application.

Exploring potential interventions aimed at improving medication self-management in young patients with a chronic disease: a participatory action research study

<u>Minke Copinga</u>^{1,2}, Marit Buiting^{2,3,4}, Femke van Schelven³, Bart Pouls^{5,6}, Johanna E. Vriezekolk⁷, Bart van den Bemt^{5,6}, Patricia van den Bemt^{1,2}, Mirthe Vergeer³, Liset van Dijk^{2,3}, Jacqueline Hugtenburg⁴, Victor Huiskes^{5,6}, Job F.M. van Boven^{1,2}, Marcia Vervloet³

1 Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, Groningen, Netherlands. 2 Faculty of Science and Engineering, Department of PharmacoTherapy, Groningen Research Institute of Pharmacy, Epidemiology & Economics (PTEE), University of Groningen, Groningen, Netherlands. 3 Nivel Netherlands institute for health services research, Utrecht, Netherlands. 4 Department of Pharmacy and Clinical Pharmacology, Amsterdam, Netherlands. 5 Department of Pharmacy, Sint Maartenskliniek, Nijmegen, Netherlands. 6 Department of Pharmacy, Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, Netherlands. 7 Department of Research, Sint Maartenskliniek, Nijmegen, Netherlands

Abstract

Aim: Adolescents and young adults with a somatic chronic disease (AYAs-SCD) face challenges in medication self-management, while this is a prerequisite for medication adherence, safe and effective medication use and good treatment outcomes. This participatory action research study aims to identify promising interventions, to be included as part of the 'FUTURE toolbox' which aims to support AYAs-SCD in their medication self-management.

Methods: In-person co-design workshops with AYAs-SCD were held with help of co-researchers. AYAs-SCD were invited to a tour in a zoo to create a setting where they felt comfortable to share their experiences with medication self-management and needs for support. Using individual workbooks and group-based brainstorm sessions, they discussed and identified interventions that could help them tackle barriers in their medication self-management. The workshops were audiotaped and transcribed ad-verbatim. Deductive, thematic coding was used. Co-researchers (AYAs-SCD) were involved in analysing and interpreting results.

Results: Seven AYAs-SCD with cystic fibrosis or inflammatory bowel disease, aged 12-18 years, participated. Promising interventions were: educative videos, reminders, group chats, medication schemes, organizers, and tools, such as games, to get distracted during injections. Furthermore, AYAs-SCD expressed preferences for communication with healthcare providers, such as being empathetic, being taken seriously, not trivializing complaints or cutting off conversations.

Discussion and Conclusion: By using co-design workshops, interventions aligning with AYAs-SCD preferences and needs to optimize their medication self-management were identified. These end-user preferred interventions contribute to the 'FUTURE toolbox'. In the next steps, this toolbox will be finalized and evaluated in a hybrid type 2 study.